Abstract

The scarcity of water resources on the island of Gran Canaria (Canary Islands, Spain) is such that 88% of the water supply for human consumption comes from seawater desalination plants. This type of process has a high specific energy consumption. Gran Canaria has an isolated electrical system of low robustness. In this paper, a geothermal plant is designed and integrated into a system that already has non-dispatchable renewable generation (wind and photovoltaic) in order to meet, based on a self-consumption regime, the energy demand of a high-capacity desalination plant. The aim is for the diversified renewable system to improve the stability and management of renewable electrical energy generation. Geothermal plant production can adapt to the energy balance between demand and non-dispatchable renewable generation. The geothermal plant’s design is based on an organic Rankine cycle and its resulting power is 4.16 MW. Its integration in the renewable generation system significantly improves the contribution of renewables in meeting the desalination plant’s energy demand and therefore reducing its dependency on the island’s electrical system. The mean cost of electrical energy generation with the diversified renewable system is 57.37 EUR/MWh, considerably lower than the mean cost of conventional generation on Gran Canaria of 153.9 EUR/MWh.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call