Abstract

For the first time, we believe, the integration of a waveguide lens and a photodetector array in GaAs for operation at a 1.3-microm wavelength is reported. The waveguide lens is a newly devised curved hybrid Fresnel/Bragg chirp grating lens fabricated by the ion-million technique. Desirable performance characteristics, including high throughput efficiency, freedom from coma (up to +/-4 deg off axis), and a near-diffraction-limited focal-spot size, have been demonstrated with this curved hybrid lens. The 10-element photodetector array of the InGaAs photoconducting type shows a measured gain-bandwidth product that is higher than 1 GHz at high frequency, while at a lower frequency the gain is in the range of several thousands. The curved-hybrid-lens-photodetector array combination realized in the GaAs 5 x 13 mm(2) in size has produced a well-resolved element spacing of 10 microm with cross talk that is lower than -14 dB. This lens-photodetector array combination constitutes a basc structure for the realization of monolit ic acousto-optic and electro-optic circuits such as integrated-optic rf spectrum analyzers and multiport switches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.