Abstract

We prove that McShane and Pettis integrability are equivalent for functions taking values in a subspace of a Hilbert generated Banach space. This generalizes simultaneously all previous results on such equivalence. On the other hand, for any super-reflexive generated Banach space having density character greater than or equal to the continuum, we show that Birkhoff integrability lies strictly between Bochner and McShane integrability. Finally, we give a ZFC example of a scalarly null Banach space-valued function (defined on a Radon probability space) which is not McShane integrable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.