Abstract
Integration by parts identities (IBPs) can be used to express large numbers of apparently different d-dimensional Feynman Integrals in terms of a small subset of so-called master integrals (MIs). Using the IBPs one can moreover show that the MIs fulfil linear systems of coupled differential equations in the external invariants. With the increase in number of loops and external legs, one is left in general with an increasing number of MIs and consequently also with an increasing number of coupled differential equations, which can turn out to be very difficult to solve. In this paper we show how studying the IBPs in fixed integer numbers of dimension d=n with n∈N one can extract the information useful to determine a new basis of MIs, whose differential equations decouple as d→n and can therefore be more easily solved as Laurent expansion in (d−n).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.