Abstract
In the current study Active Fiber Composites (AFC) utilizing Lead-Zirconate-Titanate (PZT) fibers with Kapton(R) screen printed interdigitated electrodes (IDE) were integrated into carbon fiber reinforced plastic (CFRP) laminates to investigate integration issues associated with smart structures and host laminate integrity. To aid in this goal surrogate or dummy AFC (DAFC) using a composite core and Kapton(R) outer layers (to match the longitudinal mechanical and interface properties of the AFC) were employed. These DAFC were used in place of real AFC to expedite test specimen manufacture and evaluation. This allowed efficient investigation of the impact of an integrated AFC-like inclusion on laminate mechanical integrity. Laminates with integrated AFC were additionally tested with signal monitoring to assess AFC health during the test. Investigation into laminate failure was accomplished via a finite element model of the system which was created in ANSYS to investigate failure in the composite plies. Tsai-Wu failure criterion was calculated to investigate laminate failure characteristics. Integration of AFC into CFRP laminates degraded laminate strength by 13.3% using insertion integration and 7.8% using the interlacing integration technique. The finite element model showed that interlacing integration enabled distribution of critical forces over the entire laminate while insertion integration led to critical forces concentrating over the integration region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.