Abstract
Rota-Baxter operators on Lie algebras were first studied by Belavin, Drinfeld and Semenov-Tian-Shansky as operator forms of the classical Yang-Baxter equation. As a fundamental tool in studying integrable systems, the factorization theorem of Lie groups by Semenov-Tian-Shansky was obtained by integrating a factorization of Lie algebras from solutions of the modified Yang-Baxter equation. Integrating the Rota-Baxter operators on Lie algebras, we introduce the notion of Rota-Baxter operators on Lie groups and more generally on groups. Then the factorization theorem can be achieved directly on groups. For geometrization, the notions of Rota-Baxter Lie algebroids and Rota-Baxter Lie groupoids are introduced. A Rota-Baxter Lie algebroid naturally gives rise to a post-Lie algebroid. Furthermore, the geometrization of a Rota-Baxter Lie algebra or a Rota-Baxter Lie group can be realized by its action on a manifold. Examples and applications are provided for these new notions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.