Abstract

The emission peak/carbon neutrality calls for significantly improved coal-fired power plants. Sustainability of the power plants is critical to meeting the net zero targets in 2050/2060. In this context, it is necessary to investigate the integration and conversion of the supercritical carbon dioxide coal-fired power cycle and the supercritical carbon dioxide energy storage cycle. In this work, the thermodynamic model and performance criteria are firstly presented. After comparison of the two cycles, a three-step strategy for the development of the power cycle is proposed and assessed. First step: when coal still plays an important role as a main energy resource, the integrated tri-compression coal-fired supercritical compressed carbon dioxide energy storage cycle has the highest round-trip efficiency of 56.37%. Second step: with the challenge in utilization of coal energy, a trade-off among the performance criteria must be struck in the integrated cycle with various heat sources. Third step: the adiabatic supercritical compressed carbon dioxide energy storage cycle is proposed, and a high round-trip efficiency of 72.34% is achieved in the split expansion cycle. The present research provides not only a new prospect of the conventional power plants but also design guidance for the supercritical carbon dioxide energy storage cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.