Abstract

Humans can effortlessly perceive an object they encounter for the first time in a possibly cluttered scene and memorize its appearance for later recognition. Such performance is still difficult to achieve with artificial vision systems because it is not clear how to define the concept of objectness in its full generality. In this paper we propose a paradigm that integrates the robot’s manipulation and sensing capabilities to detect a new, previously unknown object and learn its visual appearance. By making use of the robot’s manipulation capabilities and force sensing, we introduce additional information that can be utilized to reliably separate unknown objects from the background. Once an object has been identified, the robot can continuously manipulate it to accumulate more information about it and learn its complete visual appearance. We demonstrate the feasibility of the proposed approach by applying it to the problem of autonomous learning of visual representations for viewpoint-independent object recognition on a humanoid robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.