Abstract

Evolutionary algorithms that rely on dominance ranking often suffer from a low selection pressure problem when dealing with many-objective problems. Decomposition and user-preference based methods can help to alleviate this problem to a great extent. In this paper, a user-preference based evolutionary multi-objective algorithm is proposed that uses decomposition methods for solving many-objective problems. Decomposition techniques that are widely used in multi-objective evolutionary optimization require a set of evenly distributed weight vectors to generate a diverse set of solutions on the Pareto-optimal front. The newly proposed algorithm, R-MEAD2, improves the scalability of its previous version, R-MEAD, which uses a simplexlattice design method for generating weight vectors. This makes the population size is dependent on the dimension size of the objective space. R-MEAD2 uses a uniform random number generator to remove the coupling between dimension and the population size. This paper shows that a uniform random number generator is simple and able to generate evenly distributed points in a high dimensional space. Our comparative study shows that R-MEAD2 outperforms the dominance-based method R-NSGA-II on many-objective problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call