Abstract

Accurate bus arrival time prediction is key for improving the attractiveness of public transport, as it helps users better manage their travel schedule. This paper proposes a model of bus arrival time prediction, which aims to improve arrival time accuracy. This model is intended to function as a preprocessing stage to handle real-world input data in advance of further processing by a Kalman filtering model; as such, the model is able to overcome the data processing limitations in existing models and can improve accuracy of output information. The arrival time is predicted using a Kalman filter (KF) model, by using information acquired from social network communication, especially Twitter. The KF model predicts the arrival time by filtering the noise or disturbance during the journey. Twitter offers an API to retrieve live, real-time road traffic information and offers semantic analysis of the retrieved twitter data. Data in Twitter, which have been processed, can be considered as a new input for route calculations and updates. This data will be fed into KF models for further processing to produce a new arrival time estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.