Abstract

Recent advances in the traffic monitoring systems have made traffic velocity information accessible in real time. This paper proposes a supervised predictive energy management framework aiming to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV) by incorporating dynamic traffic feedback data. Compared with conventional model predictive control (MPC), an additional supervisory state of charge (SOC) planning level is constructed in this framework. A power balance PHEV model is developed for this upper level to rapidly generate optimal battery SOC trajectories, which are utilized as final state constraints in the MPC level. The proposed PHEV energy management framework is evaluated under three different scenarios: (i) without traffic information, (ii) with static traffic information, and (iii) with dynamic traffic information. Simulation results show that the proposed control strategy successfully integrates dynamic traffic velocity into the PHEV energy management, and achieves 5% better fuel economy compared with when no traffic information is utilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.