Abstract

Accurately predicting ambient NO2 concentrations has great public health importance, as traffic-related air pollution is of major concern in urban areas. In this study, we present a novel approach incorporating traffic contribution to NO2 prediction in a fine-scale spatiotemporal model. We used nationally available traffic estimate dataset in a scalable dispersion model, Research LINE source dispersion model (RLINE). RLINE estimates then served as an additional input for a validated spatiotemporal pollution modeling approach. Our analysis uses measurement data collected by the Multi-Ethnic Study of Atherosclerosis and Air Pollution in the greater Los Angeles area between 2006 and 2009. We predicted road-type-specific annual average daily traffic (AADT) on road segments via national-level spatial regression models with nearest-neighbor Gaussian processes (spNNGP); the spNNGP models were trained based on over half a million point-level traffic volume measurements nationwide. AADT estimates on all highways were combined with meteorological data in RLINE models. We evaluated two strategies to integrate RLINE estimates into spatiotemporal NO2 models: 1) incorporating RLINE estimates as a space-only covariate and, 2) as a spatiotemporal covariate. The results showed that integrating the RLINE estimates as a space-only covariate improved overall cross-validation R2 from 0.83 to 0.84, and root mean squared error (RMSE) from 3.58 to 3.48 ppb. Incorporating the estimates as a spatiotemporal covariate resulted in similar model improvement. The improvement of our spatiotemporal model was more profound in roadside monitors alongside highways, with R2 increasing from 0.56 to 0.66 and RMSE decreasing from 3.52 to 3.11 ppb. The observed improvement indicates that the RLINE estimates enhanced the model's predictive capabilities for roadside NO2 concentration gradients even after considering a comprehensive list of geographic covariates including the distance to roads. Our proposed modeling framework can be generalized to improve high-resolution prediction of NO2 exposure – especially near major roads in the U.S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.