Abstract

In pursuit of better accuracy, higher speed and larger scale, manufacturers of high-performance devices increasingly rely on components which have been designed with a multidisciplinary approach from the outset. In the context of motion systems, this means that for instance structural mechanics, control engineering and thermal analysis are considered early in the design. In addition, the prospect of producing freeform device components using additive manufacturing at full scale allows designers to even further refine components to a specific purpose, or even integrate multiple functions into a single component. The design freedom offered by additive manufacturing is far greater than that offered by traditional techniques. To exploit this freedom a topology optimization framework is proposed that allows to determine the optimal material quantity and distribution within a design volume. In particular, this article focuses on the closed-loop control performance of a motion system component, while simultaneously ensuring that mechanical requirements are met. Based on an example, it is demonstrated that this leads to nontrivial and non-intuitive designs which provide improved performance at lower structural mass compared to eigenfrequency designs. The framework allows rapid development of prototype designs, which may eliminate some of the costly design iterations which are currently made in industrial practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.