Abstract

Abstract. Lowland rice in tropical and subtropical regions can be detected precisely and its crop growth can be tracked effectively through Synthetic Aperture Radar (SAR) imagery, especially where cloud cover restricts the use of optical imagery. Parameterised classification with multi-temporal features derived from regularly acquired, C-band, VV and VH polarized Sentinel-1A SAR imagery was used for mapping rice area. A fully automated processing chain in MAPscape-Rice software was used to convert the multi-temporal SAR data into terrain-geocoded σ0 values, which included strip mosaicking, co-registration of images acquired with the same observation geometry and mode, time-series speckle filtering, terrain geocoding, radiometric calibration and normalization. Further Anisotropic non-linear diffusion (ANLD) filtering was done to smoothen homogeneous targets, while enhancing the difference between neighbouring areas. Multi-Temporal Features viz., max, min, mean, max date, min date and span ratio were extracted from VV and VH polarizations to classify rice pixels. Rice detection was based on the analysis of temporal signature from SAR backscatter in relation to crop stages. About sixty images across four footprints covering 16 samba (Rabi) rice growing districts of Tamil Nadu, India were obtained between August 2017 and January 2018. In-season site visits were conducted across 280 monitoring locations in the footprints for classification purposes and more than 1665 field observations were made for accuracy assessment. A total rice area of 1.07 million ha was mapped with classification accuracy from 90.3 to 94.2 per cent with Kappa values ranging from 0.81 to 0.88. Using ORYZA2000, a weather driven process based crop growth simulation model developed by IRRI, yield estimates were made by integrating remote sensing products viz., seasonal rice area, start of season and backscatter time series. By generating average backscatter for each time series and dB stack for each SoS, LAI values were estimated. The model has generated rice yield estimate for each hectare which were aggregated at administrative boundary level and compared against CCE yield. Yield Simulation accuracy of more than 86–91% at district level and 82–97% at block level from the study indicates the suitability of these products for policy decisions. SAR products and yield information were used to meet the requirements of PMFBY crop insurance scheme in Tamil Nadu and helped in identifying or invoking prevented/failed sowing in 529 villages and total crop failure in 821 villages. In total 303703 farmers were benefitted by this technology in getting payouts of INR 9.94 billion through crop insurance. The satellite technology as an operational service has helped in getting quicker payouts.

Highlights

  • Monitoring production of field crops is important for ensuring food security in India

  • Based on the accuracies obtained, over large area of TamilNadu, India, in rice mapping using rule based algorithm of MAPscape-RICE (Nelson et al, 2014) and yield estimation integrating Synthetic aperture radar (SAR) products and ORYZA crop growth model, this article presents the potential of Remote Sensing based products as an operational service in crop insurances

  • The temporal signature is frequency and polarization dependent and depends on the crop establishment method and, to some extent, on crop maturity. This implies that general rules can be applied to detect rice, but that the parameters for these rules may need to be adapted according to the agro-ecological zone, crop practices and rice calendar

Read more

Summary

Introduction

Monitoring production of field crops is important for ensuring food security in India. Similar to the experience of rice area mapping, yield estimation using SAR has been documented, including the integration of SAR with a crop growth model (Homma, Maki, and Hirooka 2017; Maki et al 2017).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.