Abstract

Elucidating the mechanisms underlying the assembly and dynamics of ecological communities is a fundamental goal of ecology. Two conceptual approaches have emerged in this respect: the niche-assembly view and the neutral perspective. The debate as to which approach best explains the biodiversity patterns observed in nature is becoming outdated, as ecologists increasingly agree on the existence of a niche-neutral continuum of community dynamical behaviors. However, attempts to make the continuum idea operational and measurable remain sparse. Here, we propose a model-based approach to achieving this. The proposed methodology consists of separating out fluctuations in species abundances into niche-mediated and stochastic factors, linking the niche configuration to community dynamics through competition, and adding demographic stochasticity. This results in a comprehensive framework including neutrality and strict niche segregation as extreme cases. We develop an index of departure from neutral drift as a surrogate for community position on the niche-neutral continuum. We evaluate the performance of our modeling approach with simulated data, and subsequently use the model to analyze rodent web-trapping data from a real-world system. The model fitting is carried out with a Bayesian approach using Markov chain Monte Carlo simulation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call