Abstract

A living wall, when integrated with a mechanical ventilation system, can effectively improve the indoor thermal environment and reduce indoor CO2 concentration during the transition season. In this study, a control experiment was conducted to analyze the effect of a living wall integrated with mechanical ventilation (LW-V) on indoor air quality. During the experiment, indoor air temperature, relative humidity, indoor air speed, and CO2 concentration were measured, while the skin temperature was monitored and subjective questionnaires were administered to 60 subjects. The results show that the indoor environment was effectively improved by employing the LW-V system, with the average indoor temperature decreasing by 1.45 °C, while relative humidity increased by 19.1%. Due to the plant photosynthesis, CO2 concentrations were reduced by 13.83 ppm. Meanwhile, the mean skin temperature was reduced by 0.18 °C and was closer to the neutral mean skin temperature. Questionnaire analysis reveals the LW-V system improved overall air freshness sensation and thermal comfort level by 1.09 and 0.53, respectively. The LW-V system improved the indoor thermal environment as well as air quality during the transition season significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.