Abstract

This study presents a concrete stress monitoring method utilizing 1D CNN deep learning of raw electromechanical impedance (EMI) signals measured with a capsule-like smart aggregate (CSA) sensor. Firstly, the CSA-based EMI measurement technique is presented by depicting a prototype of the CSA sensor and a 2 degrees of freedom (2 DOFs) EMI model for the CSA sensor embedded in a concrete cylinder. Secondly, the 1D CNN deep regression model is designed to adapt raw EMI responses from the CSA sensor for estimating concrete stresses. Thirdly, a CSA-embedded cylindrical concrete structure is experimented with to acquire EMI responses under various compressive loading levels. Finally, the feasibility and robustness of the 1D CNN model are evaluated for noise-contaminated EMI data and untrained stress EMI cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.