Abstract

Frequent coastal harmful algal blooms (HABs) threaten the ecological environment and human health. Biscayne Bay in southeastern Florida also faces algal bloom issues; however, the mechanisms driving these blooms are not fully understood, emphasizing the importance of HAB prediction for effective environmental management. The overarching goal of this study is to offer a robust HAB predictive framework and try to enhance the understanding of HAB dynamics. This study established three scenarios to predict chlorophyll-a concentrations, a recognized representative of HABs: Scenario 1 (S1) using single nonlinear machine learning (ML) algorithms, hybrid Scenario 2 (S2) combining linear models and nonlinear ML algorithms, and hybrid Scenario 3 (S3) combining temporal decomposition and ML (TD-ML) algorithms. The novel-developed S3 TD-ML hybrid models demonstrated superior predictive capabilities, achieving all R2 values above 0.9 and MAPE under 30% in tests, significantly outperforming the S1 with an average R2 of 0.16 and the S2 with an R2 of −0.06. S3 models effectively captured the algal dynamics, successfully predicting complex time series with extremes and noise. In addition, we unveiled the relationship between environmental variables and chlorophyll-a through correlation analysis and found that climate change might intensify the HABs in Biscayne Bay. This research developed a precise predictive framework for early warning and proactive management of HABs, offering potential global applicability and improved prediction accuracy to address HAB challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.