Abstract

Demand-Response (DR) has emerged as a valuable resource option for balancing electricity supply and demand. However, traditional power system models have neglected to include DR within long-term expansion problems. We can summarize our scientific contributions in the following aspects: (i) design of a new integrated co-optimization planning model for supply and demand coordination; (ii) assessment of the technical and economic impact of DR for systems with a high share of Renewable Energy Sources (RES) and (iii) proposal of the ‘opportunity cost’ concept for computing the price of not meeting the demand. Findings of this research support the hypothesis that DR scenarios reveal a high potential for delaying future investments in power capacity compared to scenario BAU (Business as Usual). However, it was found a limited potential of DR to integrate additional renewable plants. This research has provided further evidence concerning the potential of DR to decrease the levels of CO2 emissions that is strictly related to the reduced need for fossil fuel thermal power plants. Given the high RES share, uncertainties related to future weather conditions must be however highlighted. This study concludes on the importance of DR for power systems planning and lays the groundwork for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call