Abstract

Glycopolymers attached to a surface possess the ability to bind to certain carbohydrate binding proteins in a highly specific manner, and because of this, the fabrication of glycopolymer-modified surfaces has evolved as an effective route toward bioresponsive systems. Poly(N-3,4-dihydroxybenzenethyl methacrylamide-co-2-(methacrylamido) glucopyranose) copolymers, containing sugar and catechol functionalities, are for the first time successfully prepared in a well-controlled manner via room temperature single-electron transfer initiation and propagation through radical addition fragmentation chain transfer technique. The polymerization behavior is investigated and it presents controlled features with first-order kinetics and linear relationships between molecular weights and monomer conversions. Moreover, the copolymers are used to modify different types of surfaces (silicon, steel, and plastic), the properties of the surfaces and the specific lectin-binding abilities are investigated by a combination of water contact angle, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectra, scanning electron microscopy with energy dispersive X-ray (SEM/EDX), atomic force microscopy, and confocal microscope measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.