Abstract

In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.