Abstract

AbstractIntegration of large‐area, economically driven macro‐models and small‐area, biophysically based models in the Canadian agricultural sector was described recently in the development of a land‐use allocation model (LUAM). We have since developed and integrated an improved methodology for allocating crop area changes generated for large areas by the Canadian Regional Agricultural Model (CRAM) to much smaller Soil Landscapes of Canada (SLC) polygons. Validation of outputs showed considerable improvement. The new coefficients of determination (R2) between simulated and actual data, with previous values in brackets, were 0.69 for fodder corn (0.54), 0.88 for wheat (0.62), 0.77 for hay (0.26), 0.54 for alfalfa (not previously reported), 0.88 for soya bean (0.26) and 0.86 for grain corn (0.22). The best result was obtained for soya bean, with a normalized root mean square error (NRMSE) of 0.31%, and the poorest for alfalfa, with NRMSE = 17.34%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.