Abstract

L-PEACH is an L-system-based functional-structural model for simulating architectural growth and carbohydrate partitioning among individual organs in peach (Prunus persica (L.) Batsch) trees. The original model provided a prototype for how tree architecture and carbon economy could be integrated, but did not simulate peach tree architecture realistically. Moreover, evaluation of the functional characteristics of the individual organs and the whole tree remained a largely open issue. In the present study, we incorporated Markovian models into L-PEACH to improve the architecture of the simulated trees. The model was also calibrated to grams of carbohydrate, and tools for systematically displaying quantitative outputs and evaluating the behaviour of the model were developed. The use of the Markovian model concept to model tree architecture in L-PEACH reproduced tree behaviour and responses to management practices visually similar to trees in commercial orchards. The new architectural model along with several improvements in the carbohydrate-partitioning algorithms derived from the model evaluation significantly improved the results related to carbon allocation, such as organ growth, carbohydrate assimilation, reserve dynamics and maintenance respiration. The model results are now consistent within the modelled tree structure and are in general agreement with observations of peach trees growing under field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.