Abstract

A natural gas upstream processing network consists of several main processing units. Many process configurations are available for selection, and the choice of technologies can be vast. There is no single technology or process configuration that is superior in all aspects. Thus, there is a need for a mathematical model that considers different flowsheet configurations and operating mode options and selects optimally among them. In this paper, a comprehensive design and operational mixed integer programming model is presented for superstructure optimization to optimally select the most cost-effective pathway in natural gas upstream processing networks. The key processing units of the considered processing network include stabilization, acid gas removal, dehydration, sulfur recovery, natural gas liquid (NGL) recovery, and NGL fractionation. The developed optimization model considers a superstructure with all available technologies for each processing step as well as mode of operation, such as variations in ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.