Abstract

Data that continuously track the dynamics of large populations have spurred a surge in research on computational sustainability. However, coping with massive, noisy, unstructured, and disparate data streams is not easy. In this paper, we describe a particle filter algorithm that integrates signal processing and simulation modeling to study complex social systems using massive, noisy, unstructured data streams. This integration enables researchers to specify and track the dynamics of complex social systems by building a simulation model. To show the effectiveness of this algorithm, we infer city-scale traffic dynamics from the observed trajectories of a small number of probe vehicles uniformly sampled from the system. The experimental results show that our model can not only track and predict human mobility, but also explain how traffic is generated through the movements of individual vehicles. The algorithm and its application point to a new way of bringing together modelers and data miners to turn the real world into a living lab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.