Abstract

Abstract Renewable energy sources (RESs) and energy storage systems (ESSs) are the key technologies for smart grid applications and provide great opportunities to de-carbonize urban areas, regulate frequency, voltage deviations, and respond to severe time when the load exceeds the generation. Nevertheless, uncertainty and inherent intermittence of renewable power generation units impose severe stresses on power systems. Energy storage systems such as battery energy storage system enables the power grid to improve acceptability of intermittent renewable energy generation. To do so, a successful coordination between renewable power generation units, ESSs and the grid is required. Nonetheless, with the existing grid architecture, achieving the aforementioned targets is intangible. In this regard, coupling renewable energy systems with different generation characteristics and equipping the power systems with the battery storage systems require a smooth transition from the conventional power system to the smart grid. Indeed, this coordination requires not only robust but also innovative controls and models to promote the implementation of the next-generation grid architecture. In this context, the present research proposes a smart grid architecture depicting a smart grid consisting of the main grid and multiple embedded micro-grids. Moreover, a focus has been given to micro-grid systems by proposing a “Micro-grid Key Elements Model” (MKEM). The proposed model and architecture are tested and validated by virtualization. The implementation of the virtualized system integrates solar power generation units, battery energy storage systems with the proposed grid architecture. The virtualization of the proposed grid architecture addresses issues related to Photovoltaic (PV) penetration, back-feeding, and irregularity of supply. The simulation results show the effect of Renewable Energy (RE) integration into the grid and highlight the role of batteries that maintain the stability of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.