Abstract

In service computing, combining multiple services through service composition to address complex user requirements has become a popular research topic. QoS-aware service composition aims to find the optimal composition scheme with the QoS attributes that best match user requirements. However, certain QoS attributes may continuously change in a dynamic service environment, so service composition methods need to be adaptive. Furthermore, the large number of candidate services poses a key challenge for service composition, where existing service composition approaches based on reinforcement learning (RL) suffer from low efficiency. To deal with the problems above, in this paper, a new service composition approach is proposed which combines RL with skyline computing where the latter is used for reducing the search space and computational complexity. A WSC-MDP model is proposed to solve the large-scale service composition within a dynamically changing environment. To verify the proposed method, a series of comparative experiments are conducted, and the experimental results demonstrate the effectiveness, scalability and adaptability of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.