Abstract

The brain is composed of networks of interacting brain regions that support higher-order cognition. Among these, a core network of regions has been associated with recollection and other forms of episodic construction. Past research has focused largely on the roles of individual brain regions in recollection or on their mutual engagement as part of an integrated network. However, the relationship between these region- and network-level contributions remains poorly understood. Here, we applied multilevel structural equation modeling to examine the functional organization of the posterior medial (PM) network and its relationship to episodic memory outcomes. We evaluated two aspects of functional heterogeneity in the PM network: first, the organization of individual regions into subnetworks, and second, the presence of regionally specific contributions while accounting for network-level effects. Our results suggest that the PM network is composed of ventral and dorsal subnetworks, with the ventral subnetwork making a unique contribution to recollection, especially to recollection of spatial information, and that memory-related activity in individual regions is well accounted for by these network-level effects. These findings highlight the importance of considering the functions of individual brain regions within the context of their affiliated networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.