Abstract
Cloud computing provides scalable computing and storage resources over the Internet. These scalable resources can be dynamically organized as many virtual machines (VMs) to run user applications based on a pay-per-use basis. The required resources of a VM are sliced from a physical machine (PM) in the cloud computing system. A PM may hold one or more VMs. When a cloud provider would like to create a number of VMs, the main concerned issue is the VM placement problem, such that how to place these VMs at appropriate PMs to provision their required resources of VMs. However, if two or more VMs are placed at the same PM, there exists certain degree of interference between these VMs due to sharing non-sliceable resources, e.g. I/O resources. This phenomenon is called as the VM interference. The VM interference will affect the performance of applications running in VMs, especially the delay-sensitive applications. The delay-sensitive applications have quality of service (QoS) requirements in their data access delays. This paper investigates how to integrate QoS awareness with virtualization in cloud computing systems, such as the QoS-aware VM placement (QAVMP) problem. In addition to fully exploiting the resources of PMs, the QAVMP problem considers the QoS requirements of user applications and the VM interference reduction. Therefore, in the QAVMP problem, there are following three factors: resource utilization, application QoS, and VM interference. We first formulate the QAVMP problem as an Integer Linear Programming (ILP) model by integrating the three factors as the profit of cloud provider. Due to the computation complexity of the ILP model, we propose a polynomial-time heuristic algorithm to efficiently solve the QAVMP problem. In the heuristic algorithm, a bipartite graph is modeled to represent all the possible placement relationships between VMs and PMs. Then, the VMs are gradually placed at their preferable PMs to maximize the profit of cloud provider as much as possible. Finally, simulation experiments are performed to demonstrate the effectiveness of the proposed heuristic algorithm by comparing with other VM placement algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.