Abstract

The continuous detection of hydrogen sulfide (H2S) is significant for revealing its role in the neuron protection and diagnosis of various diseases. In this study, a Prussian blue analog nanocubes (PBA NCs)-based oxidase-like mimic was synthesized and designed for continuous H2S monitoring in a visible light absorption-based online optical detection platform (OODP). A specific chemical reaction between H2S and the PBA NCs induce a decreasing oxidase-like activity of the PBA NCs, generating lower amounts of oxidized products of 3,3'5,5'-tetramethylbenzidine (TMB) and increasing the light intensity. By coupling the microdialysis techniques with OODP, excellent linearity in the range of 0.1-20 μM H2S with a limit of detection of 33 nM and outstanding stability, reproducibility, and specificity in the response to H2S were exhibited. By using this OODP, near real-time response and continuous H2S measurements in the brains of living rats were successfully achieved. This new idea of integrating enzyme-like mimics with specific chemical reactions to form an online optical detection platform for continuous monitoring of neurochemical in the brain may be highly meaningful for thoroughly understanding the function of the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.