Abstract

In the era of transportation big data, the analysis of mobility patterns generally involves large quantities of datasets with high-dimensional variables recording individual travelers’ activities and socio-economic attributes, bringing new challenges to researchers. Conventional regression-based models commonly require complex structures in depicting random or fixed effects with a considerable number of parameters to estimate, and state-of-the-art machine learning models are regarded as black-boxes that are not clear in interpreting the mechanism in human mobility. To overcome the challenges of capturing complex high-order relationships among variables of interest, this paper proposes a Bayesian supervised learning tensor factorization (BSTF) model for the classification of travel choices in the mobility pattern analysis. The BSTF model induces a hierarchical probabilistic structure between predictor variables and the dependent variable, which offers a nature supervised learning foundation via Bayesian inference. Latent class (LC) variables are considered in the BSTF model to discover hidden preferences/states among travelers associated with their mobility patterns. We apply the BSTF model to analyze passenger-side choice patterns between diverse service options on a ride-sourcing platform, drawing increasing attention during recent years. A case study with a real-world dynamic ridesharing dataset in Hangzhou, China, is conducted. Different cases of training sizes are utilized to fit the proposed BSTF model as well as some other state-of-the-art machine learning models. By identifying significant variables and derive their probabilistic relationship between service types (i.e., ridesharing, non-sharing, and taxi), the proposed BSTF model offers good performance in both classification accuracy and the interpretability of shared mobility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.