Abstract

The alarm system given in industrial plants are massive and complex. Under such condition, critical alarms are overwhelmed by false and unnecessary alarms and thus result in severe safety issues. To address the problem, this paper proposes a probabilistic signed digraph (PSDG) based alarm signal selection method that requires achieving maximal system reliability. In this method, a PSDG model is firstly constructed to visualize the causal relations between process variables. Then the criteria of observability and identifiability are imposed to determine the candidate alarm variables that can qualitatively distinguish all assumed faults. Instead of selecting the minimum number of combinations of candidate variables, the alarm variables are optimized by a reliability formulation that takes into account the missed alarm and false alarm probabilities of the system; this formulation is solved by the receiver operating characteristic (ROC) graph. Finally, the developed methodology is illustrated using a Tennessee Eastman process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call