Abstract

Many problems in quantitative finance involve both predictive forecasting and decision-based optimization. Traditionally, predictive models are optimized with unique prediction-based objectives and constraints, and are therefore unaware of how those predictions will ultimately be used in the context of their final decision-based optimization. We present a stochastic optimization framework for integrating regression based predictive models in a mean-variance portfolio optimization setting. Closed-form analytical solutions are provided for the unconstrained and equality constrained case. For the general inequality constrained case, we make use of recent advances in neural-network architecture for efficient optimization of batch quadratic-programs. To our knowledge, this is the first rigorous study of integrating prediction in a mean-variance portfolio optimization setting. We present several historical simulations using global futures data and demonstrate the benefits of the integrated approach in comparison to the decoupled alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.