Abstract

Two basic approaches can be mentioned to model physical systems. One approach derives a model structure from the known physical laws. However, obtaining a model with the required fidelity may be difficult if the system is not well understood. A second approach is to employ a black-box structure to learn the implicit input-output relationships from measurements in which no particular attention is paid to modeling the underlying processes. A method that draws on the respective strengths of each of these two approaches is described. The technique integrates known first-principles knowledge derived from physical modeling with measured input-output mappings derived from neural processing to produce a computer model of a dynamical process. The technique is used to detect operational changes of mechanical equipment by statistically comparing, using a likelihood test, the predicted model output for the given measured input with the actual process output. Experimental results with a peristaltic pump are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call