Abstract

This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG). A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.

Highlights

  • The growing power demand has increased electrical energy production almost to its capacity limit

  • The introduction of photovoltaic based distributed generation units in the distribution system may lead to several benefits such as voltage support, improved power quality, loss reduction, deferment of new or upgraded transmission and distribution infrastructure, and improved utility system reliability [2]

  • photovoltaic based distributed generation (PVDG) is a grid-connected generation located near consumers regardless of its power capacity [3], is an alternative way to support power demand and overcome congested transmission lines

Read more

Summary

Introduction

The growing power demand has increased electrical energy production almost to its capacity limit. Harmonic distortion is caused by nonlinearity of equipment such as transformer and rotating machines [7] These harmonic currents may create greater losses in the loads which consecutively require derating of the load, overheating of neutral conductor, overheating of transformer, and malfunction of protective devices [8]. Another power quality problem arises at the interface between PVDG inverters and the grid is harmonic resonance phenomenon. The installation of PVDG units at nonoptimal locations and with nonoptimal sizes may cause higher power loss, voltage fluctuation problem, system instability, and amplification of operational cost [10]

Power Quality Impact of PVDG
Maximum Allowable Penetration Level of PVDG
Optimal Placement and Sizing of PVDG
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.