Abstract

Prioritization of candidate disease genes is crucial for improving medical care, and is one of the fundamental challenges in the post-genomic era. In recent years, different network-based methods for gene prioritization are proposed. Previous studies on gene prioritization show that tissue-specific protein-protein interaction (PPI) networks built by integrating PPIs with tissue-specific gene expression profiles can perform better than tissue-na¨ive global PPI network. Based on the observations that diseases with similar phenotypes are likely to have common related genes, and genes associated with the same phenotype tend to interact with each other, we propose a method to prioritize disease genes based on a heterogeneous network built by integrating phenotypic features and tissue-specific information. In this heterogeneous network, the PPI network is built by integrating phenotypic features with a tissue-specific PPI network, and the disease network consists of the diseases that are associated with the same phenotype and tissue as the query disease. To determine the impacts of these two factors on gene prioritization, we test three typical network-based prioritization methods on heterogeneous networks consisting of combinations of different PPIs and disease networks built with or without phenotypic features and tissue-specific information. We also compare the proposed method with other tissuespecific networks. The results of case studies reveals that integrating phenotypic features with a tissue-specific PPI network improves the prioritization results. Moreover, the disease networks generated using our method not only show comparable performance with the widely used disease similarity dataset of 5080 human diseases, but are also effective for diseases that are not in the dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call