Abstract

ABSTRACT This paper presents shape-shifting grammar as a computational method that couples the environmental impact of utilizing programable materials in adaptive façades by their design parameters. The proposed grammar relies on physical experiments in a sealed temperature chamber, associated with a digital interface and image analysis software to track motion response for our previously developed composite ‘Hygromorphic Thermo-bimetal (HMTM)’ that responds passively to variation in humidity or temperature. This is linked with Grasshopper to evaluate performance indicators, specifically environmental impact, and percentage of view.The significance of the proposed grammar lies in tracking, analyzing, and predicting the behavior of the programable composite, therefore allowing for an efficient process using programable materials in adaptive façade design without the need for exhaustive physical experimentation and digital simulations. The developed grammar identifies production rules that map embedded and controlled parameters of the composite configuration to a desired deflection and motion response along with its environmental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call