Abstract

In some cases, high-order methods are known to provide greater accuracy with larger step-sizes than lower order methods. Hence, in this paper, we present a Block Hybrid Method (BHM) of order 11 for directly solving systems of general second-order initial value problems (IVPs), including Hamiltonian systems and partial differential equations (PDEs), which arise in multiple areas of science and engineering. The BHM is formulated from a continuous scheme based on a hybrid method of a linear multistep type with several off-grid points and then implemented in a block-by-block manner. The properties of the BHM are discussed and the performance of the method is demonstrated on some numerical examples. In particular, the superiority of the BHM over the Generalized Adams Method (GAM) of order 11 is established numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.