Abstract

When autonomous robots generate behavior in complex environments they must satisfy multiple different constraints such as moving toward a target, avoidance of obstacles, or alignment of the gripper with a particular orientation. It is often convenient to represent each type of constraint in a specific reference frame, so that the satisfaction of all constraints requires transformation into a shared base frame. In the attractor dynamics approach, behavior is generated as an attractor solution of a dynamical system that is formulated in such a base frame to enable control. Each constraint contributes an attractive (for targets) or repulsive (for obstacles) component to the vector field. Here we show how these dynamic contributions can be formulated in different reference frames suited to each constraint and then be transformed and integrated within the base frame. Building on earlier work, we show how the orientation of the gripper can be integrated with other constraints on the movement of the manipulator. We also show, how an attractor dynamics of “neural” activation variables can be designed that activates and deactivates the different contributions to the vector field over time to generate a sequence of component movements. As a demonstration, we treat a manipulation task in which grasping oblong cylindrical objects is decomposed into an ensemble of separate constraints that are integrated and resolved using the attractor dynamics approach. The system is implemented on the small humanoid robot Nao, and illustrated in two exemplary movement tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call