Abstract
Fluorescence imaging is one of the cornerstone techniques for understanding how single molecules search for their targets on DNA. By tagging individual proteins, it is possible to track their position with high accuracy. However, to understand how proteins search for targets, it is necessary to elongate the DNA to avoid protein localization ambiguities. Such structures known as "DNA tightropes" are tremendously powerful for imaging target location; however, they lack information about how force and load affect protein behavior. The use of optically trapped microstructures offers the means to apply and measure force effects. Here we describe a system that we recently developed to enable individual proteins to be directly manipulated on DNA tightropes. Proteins bound to DNA can be conjugated with Qdot fluorophores for visualization and also directly manipulated by an optically trapped, manufactured microstructure. Together this offers a new approach to understanding the physical environment of molecules, and the combination with DNA tightropes presents opportunities to study complex biological phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.