Abstract
Considering that the human brain is the most powerful, generalizable, and energy-efficient computer we know of, it makes the most sense to look to neuroscience for ideas regarding deep learning model improvements. I propose one such idea, augmenting a traditional Advantage-Actor-Critic (A2C) model with additional learning signals akin to those in the brain. Pursuing this direction of research should hopefully result in a new reinforcement learning (RL) control paradigm that can learn from fewer examples, train with greater stability, and possibly consume less energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.