Abstract

Ethnopharmacological relevanceErshiwuwei Zhenzhu Pill (EZP), a representative and classic formula in Tibetan medicine, is commonly used in the treatment of various cerebrovascular diseases, including ischemic stroke (IS). Nevertheless, their efficacy and potential mechanism in treating IS have yet to be investigated. Aim of the studyThis study aimed to investigate the potential mechanisms of EZP in the treatment of IS based on network pharmacology and experimental verification. Materials and methodsThe chemical profile of EZP was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The targets related to the compounds in EZP were predicted by the Swiss Target Prediction and Target Net platform, and targets of IS were collected from the Gene Cards and OMIM databases. Subsequently, a protein-protein interaction (PPI) network of targets was constructed and analyzed by the STRING database and Cytoscape software, version 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed, and an ingredient-target-pathway network was constructed. Ultimately, the middle cerebral artery occlusion (MCAO) model was established to evaluate the anti-IS effects of EZP by detecting the neurological deficit score, HE, Nissl and TCC staining, and inflammatory factors, and the expression of key protein targets was detected by western blotting. ResultsA total of 129 components were identified in EZP. Network pharmacology revealed 3136 compound targets and 2826 disease-related targets, and 412 overlapping proteins were obtained as potential therapeutic targets. The PPI network results showed that 6 key targets (AKT1, SRC, VEGFA, TP53, TNF and EGFR) were core targets of EZP in the treatment of IS. Western blotting demonstrated that the expression levels of AKT1, VEGFA, TP53, SRC, TNF and EGFR in the brain tissue of MCAO rats were significantly changed after treatment with EZP compared to the model group. ConclusionsEZP ameliorated IS in MCAO rats. The underlying mechanism might be associated with inhibiting inflammation and apoptosis, promoting angiogenesis and protecting neurons by regulating multiple targets and pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.