Abstract

Group living in animals is a well-studied phenomenon, having been documented extensively in a wide range of terrestrial, freshwater, and marine species. Although social dynamics are complex across space and time, recent technological and analytical advances enable deeper understanding of their nature and ecological implications. While for some taxa, a great deal of information is known regarding the mechanistic underpinnings of these social processes, knowledge of these mechanisms in elasmobranchs is lacking. Here, we used an integrative and novel combination of direct observation, accelerometer biologgers, and recent advances in network analysis to better understand the mechanistic bases of individual-level differences in sociality (leadership, network attributes) and diel patterns of locomotor activity in a widespread marine predator, the lemon shark (Negaprion brevirostris). We found that dynamic models of interaction based on Markov chains can accurately predict juvenile lemon shark social behavior and that lemon sharks did not occupy consistent positions within their network. Lemon sharks did however preferentially associate with specific group members, by sex as well as by similarity or nonsimilarity for a number of behavioral (nonsimilarity: leadership) and locomotor traits (similarity: proportion of time swimming fast, mean swim duration; nonsimilarity: proportion of swimming bursts/transitions between activity states). Our study provides some of the first information on the mechanistic bases of group living and personality in sharks and further, a potential experimental approach for studying fine-scale differences in behavior and locomotor patterns in difficult-to-study organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.