Abstract

Point-of-use treatment technologies can increase access to safe drinking water in rural areas. Sustained use of these technologies is uncommon due to oversight of community needs, user-perceived risks, long-term maintenance, and conflict with traditional practices. Nanosilver-enabled ceramic water filters are unique due to the use of locally sourced materials available at or near the target community; however, technical limitations persist (e.g., nanosilver's uncontrolled release and passivation from sulfide or chloride). This work aims to overcome these limitations by impregnating nanosilver onto ceramics with a Navajo pottery rosin, collected from pinyon trees with a third-generation artisan. Here, we investigate this sustainable and novel material for drinking water treatment; the study ranges from a proof of concept to testing under realistic conditions. Results show that when embedded in a thin film, the biopolymer controlled ionic silver dissolution and prevented silver passivation from sulfide and chloride. When applied to ceramic filters, the biopolymer effectively immobilized nanosilver in a range of waters. Over a 25 day study to emulate household-use conditions, this coating method sustained disinfection of a coculture of Gram-positive and Gram-negative bacteria while controlling biofouling. Overall, the use of this Navajo pottery material can facilitate adoption while providing the needed technological advancement to these widely used treatment devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call