Abstract

Colorimetry has been considered as a potential instrument-free platform for point-of-care genomic detection. However, it is limited by the poor sensitivity and low color resolution. Herein, we report a high-resolution colorimetric biosensor based on multiple hybridization chain reactions (HCRs) on gold nanoparticle (AuNP) and alkaline phosphatase (ALP)-mediated in situ growth of gold nanobipyramids (AuNBPs) for ultrasensitive detection of the Staphylococcus aureus (S. aureus) mecA gene. In our design, target DNA is hybridized with capture hairpin DNA on magnetic beads and then amplified by multiple HCRs on AuNP. Since biotin-labeled hairpin-structured nucleic acids are utilized to conduct HCRs, together with the large specific surface area of AuNP, the biotin- and streptavidin- based reaction results in a large amount of ALP on AuNP. With the aid of NADPH, ALP-mediated in situ growth of AuNBPs is observed, and a series of rainbow-like colors are associated with different target DNA concentrations. Through the multiple-amplification strategy produced by AuNP, HCRs, and enzymatic reactions, the target DNA as low as 2.71 pM can be detected with high specificity. Moreover, this method has been successfully applied to detect the mecA gene extracted from S. aureus. Therefore, the proposed method holds great potential in clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call