Abstract

Inferring interactions between populations of different species is a challenging statistical endeavour, which requires a large amount of data. There is therefore some incentive to combine all available sources of data into a single analysis to do so. In demography and single-population studies, Integrated Population Models combine population counts, capture–recapture and reproduction data to fit matrix population models. Here, we extend this approach to the community level in a stage-structured predator–prey context. We develop Integrated Community Models (ICMs), implemented in a Bayesian framework, to fit multispecies nonlinear matrix models to multiple data sources. We assessed the value of the different sources of data using simulations of ICMs under different scenarios contrasting data availability. We found that combining all data types (capture–recapture, counts, and reproduction) allows the estimation of both demographic and interaction parameters, unlike count-only data which typically generate high bias and low precision in interaction parameter estimates for short time series. Moreover, reproduction surveys informed the estimation of interactions particularly well when compared to capture–recapture programs, and have the advantage of being less costly. Overall, ICMs offer an accurate representation of stage structure in community dynamics, and foster the development of efficient observational study designs to monitor communities in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.