Abstract

Abstract We propose an approach for instructing a robot using natural language to solve complex tasks in a dynamic environment. In this study, we elaborate on a framework that allows a humanoid robot to understand natural language, derive symbolic representations of its sensorimotor experience, generate complex plans according to the current world state, and monitor plan execution. The presented development supports replacing missing objects and suggesting possible object locations. It is a realization of the concept of structural bootstrapping developed in the context of the European project Xperience. The framework is implemented within the robot development environment ArmarX. We evaluate the framework on the humanoid robot ARMAR-III in the context of two experiments: a demonstration of the real execution of a complex task in the kitchen environment on ARMAR-III and an experiment with untrained users in a simulation environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.