Abstract

AbstractSolar‐driven hydrogen (H2) evolution combined with synchronously selective oxidation for fine chemicals production is of great significance in energy and synthetic chemistry. Herein, ultrafine Pd nanoparticles‐encapsulated MIL‐100(Fe) (Pd‐MOF‐Fe) nanocomposites are synthesized through double‐solvent impregnation integrated with photo‐reduction method. Integrating MOF‐based catalysis and Pd‐based catalysis, the Pd‐MOF‐Fe can serve as multifunctional catalyst for photoinduced alcohol dehydrogenation reaction. Optimal generation rates of H2 (3.61 mmol g−1 h−1) and benzaldehyde (3.40 mmol g−1 h−1) are gained over Pd‐MOF‐Fe, ca. 4.1 times that of the Pd/MOF‐Fe, in which Pd crystals with size ranging from 3 to 6 nm are immobilized on the intersurface of MOFs. Besides, controlled experiments reveal the pivotal role of the opened FeO6 nodes of MIL‐100(Fe) as Lewis acid sites toward alcohol activation. This work provides a controllable approach for metal nanoparticle immobilization. Furthermore, considering the diversified MOF structures, this study also highlights the infinite possibility of metal nanoparticle/MOFs as multifunctional platform for solar energy conversion and chemicals production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.