Abstract

Magnetic resonance imaging, bi-plane X-ray fluoroscopy and biomechanical modelling are enabling technologies for the non-invasive evaluation of muscle, ligament and joint function during dynamic activity. This paper reviews these various technologies in the context of their application to the study of human movement. We describe how three-dimensional, subject-specific computer models of the muscles, ligaments, cartilage and bones can be developed from high-resolution magnetic resonance images; how X-ray fluoroscopy can be used to measure the relative movements of the bones at a joint in three dimensions with submillimetre accuracy; how complex 3-D dynamic simulations of movement can be performed using new computational methods based on non-linear control theory; and how musculoskeletal forces derived from such simulations can be used as inputs to elaborate finite-element models of a joint to calculate contact stress distributions on a subject-specific basis. A hierarchical modelling approach is highlighted that links rigid-body models of limb segments with detailed finite-element models of the joints. A framework is proposed that integrates subject-specific musculoskeletal computer models with highly accurate in vivo experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.