Abstract

Explicit model predictive control (EMPC) maps offline the control laws as a set of regions as a function of bounded uncertain parameters using multi-parametric programming. Then, in online mode, it seeks the best solution within these areas. Unfortunately, the offline solution can be computationally demanding because the number of regions can grow exponentially. Thus, this paper presents the application of a deep neural network (DNN) to learn the EMPC’s regions for a photovoltaic-based charging station. The main uncertain parameters in this study are the forecast error of photovoltaic power production and the battery’s state of charge. Additionally, the connection or disconnection of an electric vehicle is considered a disruption. The final controller creates the regions at the start of each prediction time or when a disruption occurs, only using the previously created DNN. The obtained solution is validated using data from an e-vehicle charging station installed at the University of Trieste, Italy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.